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Abstract
We consider the multi-species asymmetric simple exclusion process (ASEP)
with attachment and detachment on an open chain. We find a necessary and
sufficient condition for the model to have the stationary state as a product of
scalars. First, we obtain a necessary condition on parameters. Next, we show
that it is also a sufficient condition. We give the condition in some restricted
cases. The single-site weight can be written in a determinant form in the case
where the single-site weights are homogeneous.

PACS numbers: 02.50.Ey, 05.50.+p

1. Introduction

Although non-equilibrium is one of the most attractive themes of physics and has been studied
intensively, it is fair to say that a complete coherence has not been obtained. One way to
study the non-equilibrium is to treat specific models. In recent years, models formulated as
stochastic processes of many-particle systems including driven lattice gas systems have been
studied intensively [1]. In the driven lattice gas systems, a large number of degrees of freedom
are collected into a few effective variables that follow some probabilistic rules.

The asymmetric simple exclusion process (ASEP) in one dimension is such a model.
They are used in modeling the real phenomena, such as traffic flow, molecular biology and so
on [2]. The ASEP was proposed by C T MacDonald et al in [3] to formulate the dynamics
of ribosomes along the messenger RNA. The discovery of the matrix product stationary state
of ASEP with injection and extraction at the left and right ends was an important step which
involves an exact derivation of boundary-induced phase transition [4]. The ASEP is also
exactly solvable by means of the Bethe ansatz [5–8]. The two-species ASEP, in which the
numbers of first and second kinds of particles are conserved in the bulk, also exhibit interesting
phenomena, such as spontaneous symmetry breaking, phase separations and condensation [9].
The stationary-state solutions of some multi-species ASEPs (including the two-species ASEP)
can be obtained as the matrix product form [10]. The ASEP and generalized ASEP models
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attracted much attention for their solvability, various interesting phenomena, valuable insight
into non-equilibrium systems and applicability in spite of these simple settings.

In the living cells, many kinds of motor proteins move along the filament [11]. The
feature of the dynamics of the motor proteins which the standard ASEP does not have is
attachment and detachment in the bulk. The ASEP on an open chain with particle attachment
and detachment allowed in the bulk was studied in [12, 13]. Its two-species generalizations
are also studied in [14]. In this paper, we introduce the multi-species ASEP on an open chain
with attachment and detachment of particles. Namely, we treat the multi-species particle
system in which the following two types of events occur: (i) particles in nearest-neighbor sites
exchange their positions with a specific rate. (ii) A particle at each site is detached and another
kind of particle is attached simultaneously with a specific rate regardless of their neighbors.
Each site is occupied by at most one particle. We define L and N as the number of site and the
number of state at each site, respectively.

The main result of this paper is the explicit expression of the necessary and sufficient
condition that the probability of finding a configuration (τ1, . . . , τL) in the stationary state can
be written in the following product form:

P(τ1, . . . , τL) = 1

Z

∏
1�j�L

Dj(τj ), (1)

where the single-site weight Dj(τ) is a scalar and Z is the normalizing factor defined by

Z =
∏

1�j�L

∑
1�τ�N

Dj(τ). (2)

If a model has the stationary product measure, we can calculate the densities, the currents and
arbitrary equal-time correlation functions in the stationary state. The density of the nth kind
of particles, that is the one-point function, is calculated as〈

χτj =n

〉 = 1

Z

∑
1�τi�N

P (τ1, . . . , τj−1, n, τj+1, . . . τL)

= Dj(n)

Dj (1) + · · · + Dj(N)
, (3)

where χeq = 1 if eq is true and χeq = 0 if eq is false. An arbitrary equal-time m-point
correlation function can be obtained as a product of m one-point functions:〈

χτk1 =n1 · · · χτkm=nm

〉 = 〈
χτk1 =n1

〉 · · · 〈χτkm =nm

〉
. (4)

It is well known that the zero-range process (ZRP) has the stationary product measure [15].
The ZRP on a ring is mapped to the ASEP on a ring by considering particles in the ZRP as
vacancies in the ASEP and sites in the ZRP as occupied sites in the ASEP. The ZRP with
open boundaries is studied in [16]. However it cannot be mapped to the open ASEP because
non-conservation of particles at both the ends of the ZRP makes non-conservation of the length
of the chain of the ASEP.

The content of this paper is arranged as follows. In section 2, we formulate the model
and impose a necessary condition for the stationary product measure. In section 3, we prove
that the condition obtained in section 2 is also a sufficient condition. In section 4, we show
examples with parameters restricted. The conclusion and discussion are given in section 5.

2. Model and necessary condition

Let us consider a system on an L-site open chain with the following rules (see figure 1). The
number of states per site is N and the state τ = 1 is regarded as vacancy.
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Figure 1. Multi-species ASEP with attachment and detachment on an open chain.

The particles exchange their positions at each bond between the j th and the (j + 1)th sites
as

xy �⇒ yx with a rate pj (xy → yx) (5)

for 1 � x, y � N, x �= y. Detachment of x and attachment of y take place simultaneously at
each j th site as

x �⇒ y with a rate ωj(x → y) (6)

for 1 � x, y � N, x �= y. This can be regarded as transformation from x to y, annihilation
of x if y = 1 or creation of y if x = 1. Let us set pj (xx → xx) = ωj(x → x) = p0(xy →
yx) = pL(xy → yx) = 0 to prevent the equations in what follows from being complicated.
Note that the rates pj (xy → yx) and ωj(x → y) depend on the site number j .

Let P(τ1, . . . , τL) be the probability that a configuration (τ1, . . . , τL) is found. It is
characterized by the following master equation:

− d

dt
P (τ1, . . . , τL) = Q[P ](τ1, . . . , τL), (7)

where Q is defined by

Q[P ](τ1, . . . , τL) :=
∑

1�j�L−1

pj (τj τj+1 → τj+1τj )P (τ1, . . . , τL)

−
∑

1�j�L−1

pj (τj+1τj → τj τj+1)P (τ1, . . . , τj−1, τj+1, τj , τj+2, . . . , τL)

+
∑

1�j�L

∑
1�z�N

ωj (τj → z)P (τ1, . . . , τL)

−
∑

1�j�L

∑
1�z�N

ωj (z → τj )P (τ1, . . . , τj−1, z, τj+1, . . . , τL). (8)

The stationary-state solution is defined by

Q[P ](τ1, . . . , τL) = 0 (9)

for every configuration (τ1, . . . , τL).
The form of the stationary-state solution is nontrivial if the parameters are chosen

arbitrarily. The question is whether there is a parameter region where the model has the
stationary product measure. A systematic way to obtain a necessary condition for the
existence of finite-dimensional matrix product stationary states for multi-state reaction–
diffusion processes with open boundaries was introduced in [17]. However, it is not applicable
to the model in this paper because of its inhomogeneity. Let us impose a necessary condition
on the parameters in another way, assuming that the model has the stationary product
measure (1).

3



J. Phys. A: Math. Theor. 41 (2008) 335001 C Arita

First, we calculate the element of Q[P ] corresponding to the configuration (x, . . . , x) for
1 � x � N . This element must be 0 if P is a stationary-state solution. The calculation is very
simple:

Q[P ](x, . . . , x)/D1(x) · · · DL(x) =
∑

1�k�L

∑
1�z�N

(
ωk(x → z) − ωk(z → x)

Dk(z)

Dk(x)

)
= 0.

(10)

Next, we calculate the element of Q[P ] corresponding to the configuration (x, . . . , x,
j th
y

, x, . . . , x) for 1 � x, y � N (x �= y). This element also must be 0:

Q[P ](x, . . . , x, y, x, . . . , x)/D1(x) · · · Dj−1(x)Dj (y)Dj+1(x) · · · DL(x)

= pj−1(xy → yx) + pj (yx → xy) − pj−1(yx → xy)
Dj−1(y)Dj (x)

Dj−1(x)Dj (y)

−pj (xy → yx)
Dj (x)Dj+1(y)

Dj (y)Dj+1(x)

+
∑

1�k�L

k �=j

∑
1�z�N

ωk(x → z) +
∑

1�z�N

ωj (y → z)

−
∑

1�k�L

k �=j

∑
1�z�N

ωk(z → x)
Dk(z)

Dk(x)
−

∑
1�z�N

ωj (z → y)
Dj (z)

Dj (y)

= 0. (11)

Using (10), we can simplify this equation as

uj−1(xy) + uj (yx) = vj (x) − vj (y), (12)

where

uj (xy) = pj (xy → yx) − pj (yx → xy)
Dj (y)Dj+1(x)

Dj (x)Dj+1(y)
, (13)

vj (x) =
∑

1�z�N

ωj (x → z) −
∑

1�z�N

ωj (z → x)
Dj (z)

Dj (x)
. (14)

Using the relation (12) and one with x and y replaced with each other, we find

uj (xy) = −
∑

1�k�j

(vk(x) − vk(y)) , (15)

uj (yx) = −
∑

1�k�j

(vk(y) − vk(x)) . (16)

The calculations above give a parameter space∑
1�k�L

vk(x) = 0, uj (xy) = −
∑

1�k�j

(vk(x) − vk(y))

for 1 � x, y � N, x �= y, 1 � j � L − 1, (17)

which is the necessary condition for the model to have the stationary product measure.
Although we show some examples in section 4, let us discuss here the second
equation of (17). In oder for parameters satisfying both (15) and (16) to exist, at least
one of the following two conditions must be satisfied:

Dj(y)Dj+1(x)

Dj (x)Dj+1(y)
= 1, (18)
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uj (xy) = −
∑

1�k�j

(vk(x) − vk(y)) = 0. (19)

The first choice (18) means that the single-site weights are locally homogeneous. In section 4,
we study the condition in the case where the single-site weights are globally homogeneous.
The second choice (19) provides

pj (xy → yx)Dj (x)Dj+1(y) = pj (yx → xy)Dj (y)Dj+1(x) (20)

and means that the dynamics of the exchange of particles locally satisfies the detailed balance
condition.

3. Sufficient condition

It is natural for us to have a question whether the model under the constraint (17) has the
stationary product measure (1), that is, whether the condition (17) is also a sufficient condition
for the stationary product measure. The answer is true. Defining P̂ as the product form (1),
we can check that

Q[P̂ ] = 0 (21)

under the constraint (17).
To prove this we prepare the following formula:

Qi[P̂ ](τ1, . . . , τL) = D1(τ1) · · · DL(τL)
∑

1���i

v�(τi+1) (22)

for 1 � i � L − 1, where Qi is defined by

Qi[P ](τ1, . . . , τL) :=
∑

1�j�i

pj (τj τj+1 → τj+1τj )P (τ1, . . . , τL)

−
∑

1�j�i

pj (τj+1τj → τj τj+1)P (τ1, . . . , τj−1, τj+1, τj , τj+2, . . . , τL)

+
∑

1�j�i

∑
1�z�N

ωj (τj → z)P (τ1, . . . , τL)

−
∑

1�j�i

∑
1�z�N

ωj (z → τj )P (τ1, . . . , τj−1, z, τj+1, . . . , τL). (23)

We can prove this formula recursively under the constraint (17) (see the appendix).
Using this formula for i = L − 1, we find

Q[P̂ ](τ1, . . . , τL) = QL−1[P̂ ](τ1, . . . , τL)

+
∑

1�z�N

ωL(τL → z)P̂ (τ1, . . . , τL) −
∑

1�z�N

ωL(z → τL)P̂ (τ1, . . . , τL−1, z)

= D1(τ1) · · · DL(τL)
∑

1���L−1

v�(τL) + D1(τ1) · · · DL(τL)vL(τL)

= D1(τ1) · · · DL(τL)
∑

1���L

v�(τL)

= 0. (24)

Thus, we have proved that the necessary condition (17) is also a sufficient condition that the
stationary-state solution can be written as the product of scalars (1).
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4. Some restricted cases

4.1. Case of homogeneous D

In this subsection, we investigate the necessary and sufficient condition (17) in the case where
the single-site weights are homogeneous: Dj(x) = D(x). The first condition (10) is a little
simplified as

D(x)
∑

1�k�L

∑
1�z�N

ωk(x → z) −
∑

1�k�L

∑
1�z�N

D(z)ωk(z → x) = 0. (25)

This can be rewritten as

M

⎛
⎜⎝

D(1)

...

D(N)

⎞
⎟⎠ = 0 (26)

with an N × N matrix M whose diagonal elements are

(M)aa =
∑

1�z�N

∑
1�k�L

ωk(a → z), (27)

and off-diagonal elements are

(M)ab = −
∑

1�k�L

ωk(b → a) (a �= b). (28)

Because the sum over columns of M vanishes, D(x) has the following determinant form up to
constant factors:

D(x) = det M(x), (29)

where M(x) is an (N −1)× (N −1) matrix defined by deleting the xth row and the xth column
from the matrix M. Note that (29) is valid whenever the model has the stationary product
measure with homogeneous single-site weights. It is interesting that the matrix M generates
a process of N-state system on one site, where the transformation from b to a occurs with a
rate (M)ab and the (relative) probability in the stationary state is given by (29). The second
condition (15) becomes

pj (xy → yx) − pj (yx → xy) = −
∑

1�k�j

∑
1�z�N

(
ωk(x → z) − det M(z)

det M(x)
ωk(z → x)

)

+
∑

1�k�j

∑
1�z�N

(
ωk(y → z) − det M(z)

det M(y)
ωk(z → y)

)
, (30)

where single-site weights are disappeared. If and only if (30) is satisfied, the model has the
stationary product measure with homogeneous single-site weights.

4.2. Case of homogeneous D and p

In this subsection, keeping the single-site weights homogeneous, we also set the rate
characterizing particle exchange to be homogeneous: pj (x) = p(x). As uj (xy) is independent
of j for each x and y, we find from (15) that

vj (1) = vj (2) = · · · = vj (N) (31)

and ∑
1�z�N

D(x)ωj (x → z) −
∑

1�z�N

D(z)ωj (z → x) = KD(x) (32)

6
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for 2 � j � L − 1, where K is the value of (31). Summing over 1 � x � N , we find K = 0
and thus ∑

1�z�N

D(x)ωj (x → z) =
∑

1�z�N

D(z)ωj (z → x), (33)

for 2 � j � L − 1. This means that the total flux of x which is induced by attachment and
detachment is zero at every sites except for both the ends. In (25), the terms of 2 � k � L− 1
cancel out:

D(x)
∑

k=1,L

∑
1�z�N

ωk(x → z) −
∑

k=1,L

∑
1�z�N

D(z)ωk(z → x) = 0. (34)

and the matrix M and single-site weights only depend on the parameters of both the ends.
Then the right-hand side of (30) contains only the parameters of both the ends:

p(xy → yx) − p(yx → xy) = −
∑

1�z�N

(
ω1(x → z) − det M(z)

det M(x)
ω1(z → x)

)

+
∑

1�z�N

(
ω1(y → z) − det M(z)

det M(y)
ω1(z → y)

)
. (35)

In the simplest case where N = 2, the necessary and sufficient condition (35) is simplified
as

p(21 → 12) − q(12 → 21) = (α + β + γ + δ)(αβ − γ δ)

(α + δ)(β + γ )
, (36)

and (34) as

ωj(1 → 2)D(1) = ωj(2 → 1)D(2) (for 2 � j � j − 1), (37)

where

α = ω1(1 → 2), β = ωL(2 → 1), γ = ω1(2 → 1), δ = ωL(1 → 2), (38)

D(1) = (β + γ )c, D(2) = (α + δ)c (39)

with a constant c. The constraint (36) is just the same as for the product measure (or the
matrix product state with one-dimensional matrices) in the one-species ASEP with injection
and extraction of particles at both the ends [4]. The single-site weights (39) are the same
as in that case. The constraint (37) is just the detailed balance condition. In [18, 19], exact
stationary-state solution to two-species ASEPs with non-conserving dynamics on a ring is
studied. In these papers, the stationary-state solutions are obtained as matrix product forms
and the non-conserving dynamics satisfy the detailed balance condition, which is similar
to (37).

4.3. Two-segment case

Let us return to inhomogeneous pj s and consider in the case where the single-site weights are
given as

Dj(x) =
{
d1(x) 1 � j � L′

d2(x) L′ + 1 � j � L.
(40)

If d1 �= d2, the condition (19) must be satisfied for j = L′. Thus, we find the detailed balance
condition at the junction of the two segments:

pL′(xy → yx)d1(x)d2(y) = pL′(yx → xy)d1(y)d2(x). (41)

7
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In a similar way to obtain (33), we also find∑
1�k�L′

vk(x) = 0,
∑

L′+1�k�L

vk(x) = 0. (42)

We can treat each segment as one chain with homogeneous single-site weights as in
subsection 4.1. The same calculation as in subsection 4.1 yields

d1(x) = det M(x)
1 , d2(x) = det M(x)

2 (43)

with N × N matrices M1 and M2 whose elements are

(M1)aa =
∑

1�z�N

∑
1�k�L′

ωk(a → z), (M2)aa =
∑

1�z�N

∑
L′+1�k�L

ωk(a → z), (44)

(M1)ab = −
∑

1�k�L′
ωk(b → a), (M2)ab = −

∑
L′+1�k�L

ωk(b → a) (a �= b), (45)

and

pj (xy → yx) − pj (yx → xy) = −
∑

f �k�j

∑
1�z�N

(
ωk(x → z) − det M(z)

g

det M(x)
g

ωk(z → x)

)

+
∑

f �k�j

∑
1�z�N

(
ωk(y → z) − det M(z)

g

det M(y)
g

ωk(z → y)

)
, (46)

pL′(xy → yx) det M(x)
1 det M(y)

2 = pL′(yx → xy) det M(y)

1 det M(x)
2 ,

where f = 1 and g = 1 for 1 � j � L′ −1 and f = L′ and g = 2 for L′ +1 � j � L. This is
the necessary and sufficient condition for the stationary product measure in the two-segment
case.

5. Conclusion and discussion

We have obtained the necessary and sufficient condition for the multi-species ASEP with
attachment and detachment of particles to have the stationary product measure. The condition
or restriction (17) was derived by calculating two types of elements of Q[P ]. One of them
corresponds to the configuration (x, . . . , x) and the other one to (x, . . . , x, y, x, . . . , x). We
showed that the condition (17) is also a sufficient condition. If the single-site weight is
homogeneous, it is given by the determinant of the matrix whose elements consist of the
parameters of the attachment and the detachment.

It is natural for us to be tempted to apply this idea to the model in other geometries,
such as a ring and higher-dimensional lattices. There exists, however, a necessary condition
obtained by calculating these two types of elements, which is not a sufficient one.

Let us consider, for example, the model on an L1 × L2 two-dimensional lattice with the
following rules (see figure 2). The particles exchange their positions at each bond between
the site (i, j) and the site (i, j + 1) as

xy �⇒ yx with a rate pij (xy → yx). (47)

Similarly they do at each bond between the site (i, j) and the site (i + 1, j) as

x

y
�⇒ y

x
with a rate qij

(
x

y
→ y

x

)
. (48)

Detachment of x and attachment of y take place simultaneously at each site (i, j) as

x �⇒ y with a rate ωij (x → y) (49)

for 1 � x, y � N, x �= y.

8
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Figure 2. Multi-species ASEP with attachment and detachment in two dimension.

If the model has the stationary product measure

P

⎛
⎜⎝

τ11 · · · τ1L2

...
. . .

...

τL11 · · · τL1L2

⎞
⎟⎠ = 1

Z

∏
1�i�L1
1�j�L2

Dij (τij ), (50)

the parameters should satisfy∑
1�i�L1
1�j�L2

vij (x) = 0,

uij−1(xy) + uij (yx) + u′
i−1j

(
x

y

)
+ u′

ij

(
y

x

)
= vij (x) − vij (y),

(51)

for 1 � x, y � N, x �= y, where

uij (xy) = pij (xy → yx) − pij (yx → xy)
Dij (y)Dij+1(x)

Dij (x)Dij+1(y)
, (52)

u′
ij

(
x

y

)
= qij

(
x

y
→ y

x

)
− qij

(
y

x
→ x

y

)
Dij (y)Di+1j (x)

Dij (x)Di+1j (y)
, (53)

vij (x) =
∑

1�z�N

ωij (x → z) −
∑

1�z�N

ωij (z → x)
Dij (z)

Dij (x)
. (54)

Counterexamples, however, can be shown. Namely we can find some sets of rate pij , qij

and ωij which satisfy the condition (51) and do not let the form (50) be the stationary-state
solution.

In one dimension, what we should do next is to apply the idea to more general reaction–
diffusion models where the following interactions of particles are allowed:

xy �⇒ zw (55)

for 1 � x, y, z,w � N . To determine whether the necessary condition obtained by using the
idea is also a sufficient condition or not will be a future work.

9
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Appendix

Let us prove here formula (22). Assuming that (22) is true for i, we can show that it is also
true for i + 1:

Qi+1[P̂ ](τ1, . . . , τL) (A.1)

= Qi[P̂ ](τ1, . . . , τL)

+ pi+1(τi+1τi+2 → τi+2τi+1)P̂ (τ1, . . . , τL)

−pi+1(τi+2τi+1 → τi+1τi+2)P̂ (τ1, . . . , τi, τi+2, τi+1, τi+3, . . . , τL)

+
∑

1�z�N

ωi+1(τi+1 → z)P̂ (τ1, . . . , τL)

−
∑

1�z�N

ωi+1(z → τi+1)P̂ (τ1, . . . , τi, z, τi+2, . . . , τL) (A.2)

=
∑

1���i

v�(τi+1)D1(τ1) · · · DL(τL)

+ ui+1(τi+1τi+2)D1(τ1) · · · DL(τL) + vi+1(τi+1)D1(τ1) · · · DL(τL) (A.3)

= D1(τ1) · · · DL(τL)
∑

1���i

v�(τi+1) + D1(τ1) · · · DL(τL)

×
∑

1���i+1

(v�(τi+2) − v�(τi+1)) + vi+1(τi+1)D1(τ1) · · · DL(τL) (A.4)

= D1(τ1) · · · DL(τL)
∑

1���i+1

v�(τi+2). (A.5)

In going from (A.3) to (A.4), we used the constraint (17).
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